肢體機制機器人避障的虛擬阻抗模型----外文翻譯

編號:11-272208 | DOC格式 | 75.50K | 14 頁

本文共14頁,可試讀5

試讀已結束,如需獲得全文請點擊下載

下載
已通過人工審核校對,完整可用,請放心下載 已加入誠信保障計劃,若無法下載可先行賠付
豆知手機版上線啦
分享 收藏
立即下載

內容介紹

原文檔由會員 wanli1988go 發布

摘要:一個避障方法使用一個虛擬阻抗墻系統,提出一種多有腿的機器人。擺動腿使用合規控制使軟接觸,避免與物體碰撞,這樣機器人保持移動方向盡可能而擺動腿保持優先操作區域。首選的操作區域與一個虛擬阻抗墻包圍。當腿經過閾值的首選操作區域,運動方向是通過虛擬斥力從虛擬阻抗墻避免工作區限制。此外,模式識別技術使用支持向量機實現估計接觸點之間在物體和身體通過使用數據集的誤差每條腿。虛擬阻抗字段被設置在估計接觸位置的角度直接回避。機器人是推動和轉動了虛擬斥力從阻抗場。這些被動運動從虛擬阻抗模型可以提供一個好的解決方案,避免控制對象。的可行性提出了避障方法模擬和實驗表明使用實際的機器人。
1,介紹
小機器人的發展為狹小的空間增加了先進的年檢需要運動。最近,許多研究人員已經開發出輪或履帶式機器人進行檢查,這些機器人似乎提供了一個很好的解決方案關于能源消費和緩解的機制。然而,研究運動的步態和多連桿機器人還沒有完成,這些機器人的可行性有望在未來證明。
例如,盡管腿機器人可以執行全方位的運動,大多數輪/履帶機器人不能全方位移動方向不改變。在遙感領域,這些機器人還可以使用內部傳感器的致動器作為觸角檢測最近的障礙。例如,相機和激光測距儀(LRFs)[1]-[11]是有用的但是有很多盲點,所以他們的檢測區域可輔以觸角。本研究是為了促進進行實際應用的步態運動。本文提出了一種先進的基于多支走策略遷移和觸覺傳感的運動在一個狹小的空間。圖1顯示了一個示例的一個情況,呼吁狹小的空間運動。狹窄的空間精度要求嚴格的搭檔障礙檢測,很難測量面積接近機器人的身體使用外部傳感器。這個結果在一個

Abstract— An obstacle avoidance method using a virtual impedance wall is proposed for a multi-legged robot. The swing legs use compliance control to make soft contact and avoid colliding with objects, so that the robot maintains the moving direction as far as possible while the swing legs maintain a preferred operating region. The preferred operating region is surrounded with a virtual impedance wall. When the leg passes over the threshold of the preferred operating region, the moving direction is modified by the virtual repulsive force from the virtual impedance wall to avoid the workspace limitation. Moreover, the pattern recognition technique using the support vector machine is implemented for estimating the contact point between the object and the body by using the data set of the error of each leg. The virtual impedance field is set at the estimated contact
position to direct the aspect of avoidance. The robot is pushed and rotated by the virtual repulsive force from the impedance field. These passive motions from the virtual impedance model can provide a good solution for object avoidance control. The feasibility of the proposed obstacle avoidance method is shown by simulations and experiments using actual robots.
I. INTRODUCTION
The development of small robots for narrow space inspection increases the need of advanced locomotion. Recently, numerous researchers have developed wheel or crawler type robots for inspection, and these robots appear to provide a very good solution regarding energy consumption and ease of mechanism. However, research on the motion of legged and multi-link robots is not yet complete, and the feasibility of these robots is expected to be demonstrated in the future. For example, although legged robots can perform omni-directional locomotion, most wheel/crawler robots cannot move omnidirectionally without changing direction. In the field of sensing, these robots can also use internal sensors of actuators as feelers for detecting the closest obstacles. For example,cameras and Laser Range Finders (LRFs) [1]-[11] are useful but have numerous blind spots, so their detection areas can be complemented by feelers. The present study is conducted in order to promote the practical application of legged locomotion.
The paper proposes an advanced walking strategy based on multi-legged locomotion and tactile

掃掃二維碼,隨身瀏覽文檔

手機瀏覽器 即可繼續訪問

推薦 UC瀏覽器 或 百度手機瀏覽器

手機閱讀文檔,一鍵掃碼下載

獲取二維碼

微信公眾號

手機 關注公眾號

關注公眾號,用微信掃描即可登錄網站

獲取二維碼
3d豪情在哪里看